Умножитель частоты на логических элементах. Умножение частоты

электронное (реже электромагнитное) устройство, предназначенное для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Отношение f вых /f вх (f вх и f вых – частоты колебаний соответственно на входе и выходе У. ч.) называется коэффициента умножения частоты m (m ≥ 2 ; может достигать нескольких десятков). Характерная особенность У. ч. – постоянство т при изменении (в некоторой конечной области) f вх , а также параметров У. ч. (например, резонансных частот колебательных контуров (См. Колебательный контур) или Резонаторов, входящих в состав У. ч.). Отсюда следует, что если f вх по каким-либо причинам получила приращение Δf вх (достаточно малое), то приращение Δf вых частоты f вых таково, что Δf вх /f вх = Δf вых /f вых, т. е. относительная нестабильность частоты колебаний при умножении остаётся неизменной. Это важное свойство У. ч. позволяет использовать их для повышения частоты стабильных колебаний (обычно получаемых от кварцевого задающего генератора (См. Задающий генератор)) в различных радиопередающих, радиолокационных, измерительных и др. установках.

Наиболее распространены У. ч., состоящие из нелинейного устройства (например, Транзистора, варактора, или Варикапа, катушки с ферритовым сердечником; электронной лампы (См. Электронная лампа)) и электрического фильтра (См. Электрический фильтр) (одного или нескольких). Нелинейное устройство изменяет форму входных колебаний, вследствие чего в Спектре колебаний на его выходе появляются составляющие с частотами, кратными f вх. Эти сложные колебания поступают на вход фильтра, который выделяет составляющую с заданной частотой mf вх , подавляя (не пропуская) остальные. Поскольку такое подавление в реальных фильтрах не является полным, на выходе У. ч. остаются нежелательные (т. н. побочные) составляющие, т. е. гармоники с номерами, отличными от m. Задача облегчается, если нелинейное устройство порождает практически только m- ю гармонику f вх, – в этом случае иногда обходятся без фильтра (известны подобные У. ч. на туннельных диодах (См. Туннельный диод) и специальных электроннолучевых приборах). При m > 5 бывает энергетически выгоднее использовать многокаскадные У. ч. (в них выходные колебания одного каскада служат входными для другого).

Находят применение также У. ч., действие которых основано на синхронизации автогенератора (см. Генерирование электрических колебаний). В последних возбуждаются колебания с частотой f 0 = mf вх , которая становится в точности равной mf вх под действием поступающих на его вход колебаний с частотой f вх. Недостаток таких У. ч. – сравнительно узкая полоса значений f вх, при которых возможна синхронизация. Кроме указанных, некоторое распространение получили радиоимпульсные У. ч., в которых на вход электрического фильтра подаются радиоимпульсы определённой формы, вырабатываемые под действием входных колебаний с частотой f вх.

Основная проблема при создании У. ч. – уменьшение фазовой нестабильности выходных колебаний (обусловленной случайным характером изменения их фазы), приводящей к увеличению относительной нестабильности частоты на выходе по сравнению с соответствующей величиной на входе. Строгий расчёт У. ч. связан с интегрированием нелинейных дифференциальных уравнений.

Лит.: Жаботинский М. Е., Свердлов Ю. Л., Основы теории и техники умножения частоты, М., 1964; Ризкин И. Х., Умножители и делители частоты, М., 1966; Бруевич А. Н., Умножители частоты, М., 1970; Радиопередающие устройства на полупроводниковых приборах, М., 1973.

И. Х. Ризкин.

  • - влектронный умножитель, - электронное устройство для усиления потока электронов на основе вторичной электронной эмиссии...
  • - специальный трансформатор, увеличивающий частоту переменного тока, вырабатываемого генератором, либо специальная ламповая схема, служащая для получения токов высокой частоты...

    Морской словарь

  • - электронное устройство для усиления тока первичных электронов на основе вторичной электронной эмиссии. ЭУ либо входит в состав нек-рых электровакуумных приборов, либо используется как самостоят...

    Естествознание. Энциклопедический словарь

  • - фотоумножитель, - усилитель слабых фототоков, действие к-poro осн. на вторичной электронной эмиссии; разновидность фотоэлектронного прибора. Осн. узлы ФЭУ: фотокатод, эмитирующий электроны под действием оптич...

    Большой энциклопедический политехнический словарь

  • - см. Вторично-электронный умножитель...

    Большой энциклопедический политехнический словарь

  • - электронное устройство, предназначенное для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Отношение fвых/fвх называется коэффициента умножения частоты m ...
  • - электровакуумный прибор, в котором поток электронов, эмитируемый Фотокатодом под действием оптического излучения, усиливается в умножительной системе в результате вторичной электронной эмиссии...

    Большая Советская энциклопедия

  • - электронное устройство для усиления потока электронов на основе вторичной электронной эмиссии...

    Большая Советская энциклопедия

  • - радиоэлектронное устройство для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний...
  • - усилитель слабых фототоков, действие которого основано на вторичной электронной эмиссии. Конструктивные узлы ФЭУ: фотокатод, диноды и анод-коллектор...

    Большой энциклопедический словарь

  • - умножи/тель-дете/ктор,...

    Слитно. Раздельно. Через дефис. Словарь-справочник

  • - УМНОЖИ́ТЕЛЬ, умножителя, муж. В выражении: умножитель частоты - трансформатор, увеличивающий частоту переменного...

    Толковый словарь Ушакова

  • - ...

    Орфографический словарь-справочник

  • - умнож"...

    Русский орфографический словарь

  • - ...

    Формы слова

  • - умножатель, фото,...

    Словарь синонимов

"Умножитель частоты" в книгах

Свободные частоты

Из книги Google. Прошлое. Настоящее. Будущее автора Лау Джанет

Свободные частоты Трудно передать восторг Ларри Пейджа, когда пришло известие, что Федеральная комиссия США по связи (Federal Communications Commission, FCC) одобрила использование свободных частот, не задействованных в трансляции телевизионных или радиопередач: Не за горами тот день,

Как контролировать частоты

Из книги Просите – и получите автора Моранси Пьер

Как контролировать частоты Этот усилитель успеха всего лишь дополняет объяснения, представленные мной в разделе о питании. Поскольку все во Вселенной вибрирует, вам следует заняться изучением внешних воздействий на ваш энергетический уровень. Какой смысл

Глава шестая Токи высокой частоты. Резонанс-трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты

Из книги автора

Глава шестая Токи высокой частоты. Резонанс-трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты По утверждению Теслы, год, проведенный им в Питсбурге, был потерян для исследовательских работ в области многофазных токов. Возможно, что это

9. ЧАСТОТЫ МОСКВЫ

Из книги Энциклопедия безопасности автора Громов В И

9. ЧАСТОТЫ МОСКВЫ Большинство из предлагаемых вашему вниманию частот можно прослушивать с помощью сканирующего приемника (сканера). Мы рекомендуем проверенные и надежные сканеры японской фирмы AOR Ltd модели AR-3000 (стационарный) или AR-8000 (портативный). Их, а так же любую

Умножитель частоты

автора Коллектив авторов

Умножитель частоты Умножитель частоты – это радиоэлектронное устройство, предназначенное для увеличения частоты периодических электрических колебаний в целое число раз. В задачи этого электрического аппарата входит увеличение частоты приводимых к нему

Фотоэлектронный умножитель

Из книги Большая энциклопедия техники автора Коллектив авторов

Фотоэлектронный умножитель Фотоэлектронный умножитель – электровакуумный прибор, в котором поток электронов, эмитируемый фотокатодом под воздействием оптического излучения, в результате вторичной электронной эмиссии усиливается в умножительной системе; ток в цепи

Девиация частоты

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ Из книги Большая Советская Энциклопедия (ФО) автора БСЭ

Умножитель частоты

Из книги Большая Советская Энциклопедия (УМ) автора БСЭ

1.3.2. Частоты

Из книги Электронные фокусы для любознательных детей автора Кашкаров Андрей Петрович

1.3.2. Частоты При проведении эксперимента в сельских условиях сигнал с портативного трансивера был получен другим корреспондентом, находящимся в 22 м от меня – принят на идентичную радиостанцию, настроенную на те же частоты.При экспериментировании замечена интересная

1. Введение

2. Обзор методов решения аналогичных задач

3. Выбор обоснования и предварительный расчёт структурной схемы

4. Описание принципа работы структурной схемы

5. Описание схемы электрической и электрический расчёт

6. Расчёт на ЭВМ

7. Заключение

8. Список литературы

9. Перечень элементов к электрической схеме

1. Введение

Умножители частоты, или как их называют в более развернутом виде, системы формирования дискретного множества частот, в настоящее время получили очень широкое распространение в самых разнообразных видах радиоэлектронной аппаратуры.

Индукционные печи с токами высокой частоты, радиосвязные, радионавигационные и радиолокационные системы, схемы подавления помех, системы управления скоростью двигателя – вот далеко не полный перечень областей применения умножителей частоты.

Появление первых разработок умножителей частоты относится к 30-м и 40-м годам XX века.

В электротехнике и электронике умножителем частоты называется радиоэлектронное устройство, предназначенное для увеличения в целое число раз N частоты подводимых к нему периодических электрических колебаний в заданном диапазоне частот с требуемой стабильностью и качеством выходного сигнала.

Основной параметр – коэффициент умножения частоты N , определяемый как отношение частоты выходного сигнала к частоте входного:

(1.1)

Характерной особенностью умножителей частоты является постоянство N при изменении (в некоторой конечной области) частоты входного сигнала, а также параметров самого умножителя (например, резонансных частот колебательных контуров или резонаторов, входящих в состав умножителя частоты), т.е. в умножителе частоты относительная нестабильность частоты колебаний при умножении остается постоянной. Это важное свойство позволяет использовать умножители частоты для повышения частоты стабильных колебаний в различных радиопередающих, радиолокационных, измерительных и других установках; при этом N может достигать 10 и более.

Основная проблема при конструировании умножителей частоты – это уменьшение фазовой нестабильности входных колебаний (обусловленной случайным характером изменения их фазы), которая приводит к увеличению относительной нестабильности частоты на выходе по сравнению с соответствующей величиной на входе.

Наиболее распространены умножители частоты, состоящие из нелинейного устройства (например, транзистора, варикапа, катушки с ферритовым сердечником) и одного или нескольких электрических фильтров. Нелинейное устройство изменяет форму входных колебаний, вследствие чего в спектре колебаний на его выходе появляются составляющие с частотами, кратными входной частоте. Эти сложные колебания поступают на вход фильтра, который выделяет составляющую с заданной частотой

, подавляя (не пропуская) остальные. Такие устройства применяются для умножения частоты гармонических колебаний.

Находят применение также умножители частоты, действие которых основано на синхронизации колебаний автогенератора. В таких приборах возбуждаются колебания с частотой

, которая становится в точности равной под действием поступающих на вход колебаний с частотой . Недостатком этих умножителей частоты является сравнительно узкая полоса значений , при которых возможна синхронизация.

Также, в отличие от обычных умножителей частоты умножители на фазовращателях могут обеспечить спектрально чистый, не требующий фильтрации выходной сигнал. Используя для расщепления фазы широкополосные фазово-разностные цепи, можно реализовать частотно-независимые умножители, работающие в диапазоне, который перекрывает множество октав.

В настоящее время выявились следующие основные методы построения умножителей частоты:

косвенный на базе систем импульсно-фазовой автоподстройки частоты (ИФАПЧ);

прямой с использованием фильтрующих элементов на поверхностно-акустических волнах;

цифровой на основе вычислительных процедур.

Необходимо отметить, что умножители частоты с ИФАПЧ относятся к числу чрезвычайно динамичных, развивающихся систем формирования дискретного множества частот. Решающую роль при этом играют такие важнейшие преимущества умножителей частоты и ИФАПЧ, как возможность реализации высококачественных спектральных и приемлемых динамических характеристик при хороших габаритных, энергетических и других показателях.

2. Обзор методов решения аналогичных задач

Рассмотрим некоторые схемы и методы построения умножителей частоты. Процесс умножения частоты на нелинейном элементе сводится к следующему: входной сигнал воздействует на нелинейный элемент или на нелинейный резонатор, в результате чего синусоидальное колебание превращается в периодическое несинусоидальное, которому соответствует бесконечный ряд синусоидальных составляющих. Затем резонатор выделяет ту составляющую, на которую он настроен, в результате чего на выходе выделенная гармоника преобладает над всеми остальными.

Величины побочных гармоник определяется добротностью резонатора, и для того, чтобы их уменьшить, необходимо увеличивать добротность резонаторов. Однако величина добротности резонаторов особенно на длинных и коротких волнах ограничена, и в этом случае для ослабления побочных гармоник применяют специальные фильтры или различные буферные каскады.

Основным показателем умножителя частоты на пассивном нелинейном элементе является коэффициент полезного действия η, под которым понимается отношение мощности N-ой гармоники в нагрузке

к мощности, потребляемой от возбудителя:

Столь малые значения к.п.д. обусловлены тем, что из-за выпрямительных свойств нелинейного активного сопротивления большая часть мощности возбудителя преобразуется в мощность постоянного тока и выделяется в цепи смещения.

Если для цепей умножения частоты применять нелинейное реактивное сопротивление, то из-за отсутствия в таком нелинейном элементе потерь мощности при идеальной фильтрации во входной и выходной цепях к.п.д. умножителя будет равен.

В качестве нелинейного реактивного сопротивления в умножителях частоты обычно используют нелинейную ёмкость p -n перехода.

Рисунок 2.1 . Структурная схема умножителя частоты на нелинейном элементе. 1 – фильтр, настроенный на гармонику, близкую к первой; n – фильтр, настроенный на n-ую гармонику.

Принцип работы умножителей на фазовращателях показан на рис.2.2. Частота синусоидального сигнала умножается на N путем разделения входного напряжения на N различных фаз, равноудаленных друг от друга в диапазоне 360°. N сигналов с различными фазами управляют N транзисторами, работающими в режиме класса С, выходные сигналы которых объединяются для формирования импульса через каждые 360°/N градусов. Благодаря использованию N транзисторов мощность входного сигнала может быть в N раз выше мощности, необходимой для насыщения транзистора.


Рисунок 2.2 . Структурная схема умножителя частоты на фазовращателях.

Схема простого умножителя частоты с переменным коэффициентом умножения и жесткой синхронизацией выходных сигналов по отношению к входным приведена на рис. 2.3. Он состоит из генератора импульсов на трех инверторах DD1.1-DD1.3 и синхронизирующего каскада на транзисторе VT1.

Когда входные синхроимпульсы отсутствуют, мультивибратор на DD1.1-DD1.3 работает в обычном режиме. Если в генераторе использована микросхема с двумя защитными диодами на входе, длительность перезарядки конденсатора C1 для любой полярности одинакова и период импульсов составит 1,4 R3 C1, а частота f - 0,7/(R3 C1).

При поступлении на вход VT1 положительных импульсов частоты F вх (рис. 2.3) транзистор в моменты t 1 ,t 3 открывается, что приводит к срыву процесса периодической перезарядки. После закрывания его с момента t 2 , t 4 процесс генерации возобновляется.Генератор формирует импульсы, синхронные по отношению к входным с частотой

F вых = kF вх, (2.3)


Рисунок 2.3 . Принципиальная схема умножителя частоты с жёсткой синхронизацией.

где k - переменный коэффициент умножения,определяемый элементами R3, C1, а F вх - частота входных импульсов.

В качестве элементов DD1 можно использовать любые инверторы микросхем серий К176, К561, КР1561. Кроме того, элементы DD1.1, DD1.2 могут быть без инверсии (буферы) или с гистерезисом (триггеры Шмитта).Транзистор серии КТ315 допустимо заменить другим аналогичным.

Это устройство при подаче на вход импульсов строчной частоты телевизионной развертки позволяет выделять строго определенные участки строки растра для формирования или считывания информации.

Так же умножитель частоты можно спроектировать на резонансном усилительном каскаде. Резонансным называется усилитель, нагрузкой которого служит резонансный контур, настроенный на частоту усиливае­мого сигнала. Для настройки в контуре используется переменное реактивное сопротивление. Резонансные усилители являются из­бирательными высокочастотными усилителями. В радиотехнике они предназначаются для выделения из действующих на входе сигналов с разными частотами лишь группы сигналов с близкими частотами, которые несут нужную информацию. К резонансным усилителям предъявляются требования возможно большего уси­ления, высокой избирательности и стабильности, малого уровня шумов, удобства управления и др.

Цепи фазовой подстройки частоты часто используются для умножения частоты. Раньше для этой цели использовались схемы генераторов гармоник с последующим выделением соответствующей гармоники узкополосным фильтром.

Намного лучше для этой цели подходит схема фазовой автоподстройки частоты. В этой схеме относительно просто можно изменять коэффициент умножения схемы изменением коэффициента деления в цепи обратной связи. Для умножения частоты используется либо цифровая, либо полностью цифровая схема фазовой автоподстройки частоты.

Умножители частоты в настоящее время обычно используются для увеличения внутренней тактовой частоты больших интегральных микросхем. В этих микросхемах цифровая схема фазовой автоподстройки частоты получила название аналогового умножителя тактовой частоты, а полностью цифровая схема ФАПЧ получила название цифрового умножителя частоты.

Для увеличения тактовой частоты цифровых микросхем чаще используется полностью цифровая схема умножения частоты, а для смешанных схем или схем, предназначенных для цифровой обработки сигналов предпочтительнее использование аналогового умножителя частоты. Это связано со спектральной чистотой выходного сигнала. Аналоговая схема обеспечивает более стабильное колебание, но при этом медленнее выходит на рабочий режим.

Пример принципиальной схемы аналогового умножителя тактовой частоты приведен на рисунке 1.

Рисунок 1. Принципиальная схема аналогового умножителя частоты.

В этой схеме опорный генератор с кварцевой стабилизацией частоты реализован на логических элементах D4 и D6. Генератор, управляемый напряжением, реализован на элементах D1 и D3. Учитывая, что это RC-генератор, он обладает очень большим диапазоном перестройки частоты. В качестве регулировочного элемента использован полевой транзистор VT1. Он может изменять сопротивление канала в пределах нескольких тысяч. (Во столько же раз будет перестраиваться и частота ГУН.) Фазовый компаратор реализован на микросхемах D7, D8 и D10. Полосу захвата цепи фазовой автоподстройки определяет фильтр низкой частоты, реализованный на конденсаторе C4.

Данный умножитель частоты допускает только шестнадцать ступеней регулировки тактовой частоты. Код, определяющий коэффициент умножения вводится через упрощенный последовательный порт,собранный на сдвиговом регистре D2. В зависимости от кода частота на выходе изменяется в 16 раз.

В более сложных схемах умножителей частоты вводятся делители между опорным генератором и фазовым компаратором. Это позволяет реализовывать дробные коэффициенты умножения частоты.

Формирование частоты, кратной фиксированной входной частоте, является одним из наиболее распространенных применений ФАПЧ. В частотных синтезаторах частота выходного сигнала формируется за счет умножения частоты, стабилизированной кварцевым резонатором, на число п, число п можно задавать в цифровом виде, т.е. можно получить гибкий источник сигналов, которым можно управлять даже с помощью компьютера или простого контроллера.

В данном примере попытаемся использовать ФАПЧ чтобы получить довольно высокую частоту диапазона ДМВ, стабилизированную низкочастотным кварцевым резонатором. Итак, имеем кварцевый резонатор на частоту 6,8 МГц, микросхему КР193ИЕ6 (делитель на 64, работает на частотах до 1000 МГц), а также микросхему КР1564ЛП5, которую будем использовать в качестве фазового детектора.

Начнем со стандартной схемы ФАПЧ, в которой между выходом ГУН и фазовым детектором включен счетчик-делитель на - n (рис.1).

На этой схеме для каждого функционального блока указан коэффициент передачи. При расчете контура ФАПЧ эти коэффициенты используются для проведения расчетов по устойчивости. Имеются специальные формулы для расчета каждого из коэффициентов передачи. Общий коэффициент передачи контура ФАПЧ будет равен произведению коэффициентов передачи всех функциональных блоков контура.

По результатам расчета величины общего коэффициента судят об устойчивой работе данной схемы контура. Наибольшие трудности в этих расчетах приходятся на долю расчета элементов НЧ фильтра. Большинству радиолюбителей, не имеющих возможности заняться расчетом устойчивости, приходится подбирать компоненты фильтра до тех пор, пока контур не заработает. Попробуем рассмотреть назначения элементов фильтра. На рис.2 приведена одна из возможных схем фильтра НЧ.

Произведение R1xC0 определяет время сглаживания контура, a R0/R1 - демпфирование, т.е. отсутствие перегрузки в скачкообразном изменении частоты. Подбор величин можно начинать с R0 = 0,2 R1. На рис.2(б) приведена схема с дополнительным конденсатором С1. Один из возможных вариантов этого фильтра может иметь следующие данные: R1 = 10k, R0 = 10к, С0 = 1000 и С1 = 0,033мк.

Рассмотрим принципиальную схему умножителя частоты с ФАПЧ, в которой имеется кварцевый резонатор на частоту 6,8 МГц, микросхема КР193ИЕ6 (делитель на 64, работает на частотах до 1000 МГц), а также микросхема КР1564ЛП5, которую будем использовать в качестве фазового детектора. На рис.3 приведена одна из возможных принципиальных электрических схем умножителя частоты на 64 с применением ФАПЧ, в которой задействованы перечисленные выше компоненты.

Рис.3

Эта схема не является отработанной и приведена мною чисто в целях иллюстрации возможного варианта умножителя с применением ФАПЧ. Фазовый детектор выполнен на МС DD1 74НС86 (564ЛП5). На элементе этой микросхемы DD1.1 выполнен генератор с кварцевым резонатором Z1. На элемент DD1.3, который работает в режиме повторителя, поступает сигнал с МС делителя частоты ГУН.

Разностный сигнал выявляется на элементе DD1.2 и подается на активный НЧ фильтр, выполненный на транзисторах VT1 и VT2. R10 и С6 являются дополнительными элементами НЧ фильтра. На варикап VD1 разностный сигнал поступает через R10. ГУН выполнен на транзисторе VT3, а на VT4 собран буфер - усилитель частоты ГУН. С VT4 сигнал с подается через С14 на выход, а через фильтр ВЧ С13Др1С15 на делитель частоты ГУН, выполненный на DD2. С выхода делителя частоты сигнал подается на фазовый детектор через конденсатор С16.

Процесс захвата

Для выполнения процесса захвата частоты необходимым условием является достаточное напряжение сигнала рассогласования после НЧ фильтра. Всегда следует помнить, что НЧ фильтр на LC элементах вносит большое ослабление сигнала. Контур первого порядка всегда будет синхронизироваться, поскольку там отсутствует ослабление сигнала рассогласования на низкой частоте.

Синхронизация контура второго порядка зависит от типа фазового детектора и полосы пропускания фильтра нижних частот. Кроме того, фазовый детектор по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ имеет ограниченный диапазон захвата, зависящий от постоянной времени фильтра.

Рис.4
Процесс захвата происходит следующим образом: когда сигнал фазового рассогласования приближает частоту ГУН к опорной частоте, его изменения становятся более медленными и наоборот. Сигнал рассогласования поэтому является асимметричным и меняется более медленно в той части цикла, в течение которой fгун ближе подходит к fon.

В результате появляется ненулевая средняя компонента, т.е. постоянная компонента, которая и вводит ФАПЧ в синхронизм. Если графическим путем проанализировать управляющее напряжение ГУН в процессе захвата, то можно получить что-то похожее на сигнал, показанный на рис.4.
Каждый процесс захвата индивидуален и каждый раз он выглядит по-разному.

Полоса захвата и слежения

При использовании фазового детектора по схеме ИСКЛЮЧАЮЩЕЕ ИЛИ полоса захвата ограничена постоянной времени фильтра нижних частот. В этом есть определенный смысл, так как, если различие по частоте велико, сигнал рассогласования будет ослабляться фильтром настолько, что контур никогда не сможет осуществить захват. Очевидно, что увеличение постоянной времени фильтра уменьшает полосу захвата, так как это приводит к пониженному коэффициенту передачи контура.

Умножитель частоты на МС12179

Фирма Motorola изготавливает серийно микросхему ФАПЧ типа МС12179, которая в своем составе уже имеет следующие компоненты, необходимые для создания полноценного контура ФАПЧ, а именно:

Все элементы, необходимые для организации работы внешнего генератора с кварцевой стабилизацией частоты;
Фазовый детектор;
Делитель частоты на 256, что позволяет использовать эту МС как умножитель частоты до частот 2500 МГц;
Предусмотрен вход для частоты ГУН и выход сигнала рассогласования к НЧ фильтру.

Обратите внимание, - фильтра НЧ в составе микросхемы нет, его в каждом отдельном случае следует проектировать в соответствии с индивидуальными требованиями к умножителю.

Рис.5 и 6

На рис.5 показан схематически контур ФАПЧ с микросхемой МС12179. Кварц Z1 может выбираться в пределах от 5 до 11 МГц, при этом на выходе умножителя можно получить частоты в диапазоне от 2400 до 2800 МГц. Схемы возможных для применения НЧ фильтров показаны на рис.6.

Умножитель частоты с ФАПЧ на МС12179 создает шумы во много раз меньшие, чем умножитель по описанной выше схеме с отдельным делителем частоты.

Синтезатор частоты на LM7001

Схема синтезатора частоты для диапазона 145МГц выполнена на микросхеме LM7001J, используемой различными фирмами в бытовых радиоприемниках.

Синтезатор предназначен для работы в приемопередающих устройствах ЧМ с промежуточной частотой 10,7 МГц. Он обеспечивает формирование сигнала с частотой 133,3...135,3 МГц в режиме приема и 144...146 МГц в режиме передачи с шагом сетки частот 25 кГц. В нем также предусмотрена возможность сканирования в режиме приема во всем диапазоне рабочих частот.

Синтезатор имеет энергонезависимую память на три пользовательские частоты. В нем также зашиты 9 репитерных каналов (R0...R8). В режиме передачи в синтезаторе осуществляется частотная модуляция ВЧ сигнала. Питают синтезатор напряжением 8...15 В. Ток потребления - не более 50 мА. Уровень ВЧ сигнала на его выходе при нагрузке 50 Ом составляет не менее 0,1 В. Эта очень интересная конструкция должна заинтересовать многих радиолюбителей.

Технические характеристики МС LM7001J:

1. Номинальное напряж. питания, В.....................................................4,5...6,5.
2. Входное напряж. высокого уровня, В, по входам СЕ, CL, Data 2,2...6,5.
3. Входное напряжение низкого уровня, В, по входам СЕ, CL, Data ...0... 0,7.
4. Максимально допустимое напряжение, подводимое к выходу SC, В.... 6,5.
5. Максимальное допустимое напряжение, подводимое к выходам BSoutl... BSout3, В........13.
6. Максимально допустимый выходной ток выхода SC, мА..................... 3.
7. Максимально допустимый входной ток входов BSoutl... BSout3, мА 3.
8. Частотный интервал входа Amin1, МГц..................0,5...10.
9. Частотный интервал входа Fmin, МГц, при шаге частотной сетки
- 25,50,100 кГц.............45...130.
- 1,5,9,10 кГц............ 5...30.
10. Чувствительность по входам Amin и Fmin, В (эфф.)..............0,1 ...1,5.
11. Типовое значение входного сопротивления по входам Amin и Fmin, кОм............ 500.
12. Общий потребляемый ток, мА.................. 40.

Микросхемы LM7001J и LM7001JM предназначены для построения частотных синтезаторов с системой ФАПЧ, применяемых в бытовых радиоприемных устройствах. Обе микросхемы идентичны по схеме и параметрам и отличаются лишь конструкцией корпуса - у LM7001J корпус DIP16 для обычного монтажа, у LM7001JM -MFP20 для поверхностного монтажа (обе микросхемы пластмассовые). Назначение выводов микросхем представлена в таблице ниже.

Выводы Xout и Xin - выход и вход усилителя сигнала образцовой частоты; к этим выводам подключают кварцевый резонатор. Вывод СЕ- вход сигнала разрешения записывания. CL -вход тактовых импульсов записывания. Data -информационный вход. SC - Syncro Control - выход контрольной частоты 400 кГц. BSoutl -BSout3 - band switching-выходы управления внешними устройствами (выход BSoutl, кроме этого, - выход сигнала частоты 8 Гц); с помощью этих сигналов выполняется коммутация диапа-зонов Amin и Fmin - входы программируемого делителя частоты, иначе говоря, входы сигналов AM и ЧМ. Pdl и Pd2 -выходы частотно-фазового детектора в режимах FM и AM соответственно.

Функциональная схема прибора изображена на рис. 7. Управляющая последовательность битов, поступающая на приемный сдвиговый регистр, определяет значение шага частотной сетки синтезатора, коэффициент деления программируемого делителя частоты, режим его работы и состояние выходов BSoutl...BSout3.

Рис.7

Микросхема может работать с семью стандартными значениями шага частотной сетки - 1, 5, 9, 10, 25, 50 или 100 кГц (при частоте образцового генератора 7200 кГц. Введение управляющей последовательности битов происходит последовательно, начиная с младшего бита коэффициента деления частоты программируемого делителя, который может работать в двух режимах - AM и FM.

Умножение частоты это процесс получения колебаний с частотой кратной частоте исходного колебания.

Умножение частоты применяется в случае, если по каким либо причинам невозможно получить колебание с требуемой частотой (на частотах нескольких сотен мегагерц и выше) или при необходимости получить частоту колебаний с точностью кратную определенной частоте.

Умножение частоты может осуществляться тремя методами:

  • метод угла отсечки;
  • метод получения частот с помощью периодической последовательности импульсов (ППИ);
  • метод получения кратных частот с помощью радиоимпульса.

Метод угла отсечки

Данный метод используется для получения гармонического колебания с кратной частотой из другого гармонического колебания. Для получения колебания с требуемой частотой необходимо трансформировать спектр входного сигнала (внести в спектр новые гармонические составляющие). Для трансформации спектра используется нелинейный элемент, работающий в режиме отсечки. Для этого положение рабочей точки задается, с помощью напряжения смещения U 0 , за пределами вольт-амперной характеристики элемента (рисунок 26). В этом случае элемент открывается лишь в момент, когда напряжение входного сигнала Uвх достигает определенного начального значения Uн. Когда Uвхуглом отсечки (q), который равен половине той части периода входного колебания, в течении которой через нелинейный элемент протекает ток, или, другими словами, равен половине длительности импульса. При q=0 напряжение на выходе элемента отсутствует, т. к. элемент все время закрыт. При q=180° элемент работает без отсечки и на выходе наблюдается гармоническое колебание, причем в спектре этого колебания будет присутствовать постоянная составляющая.

Рисунок26 - К пояснению режима работы нелинейного элемента при умножении частоты

Угол отсечки может быть определен из выражения

cos ? = (U н U 0 )/ Um (36)

где Um — амплитуда входного колебания.

Амплитуда импульсов выходного тока определяется выражением

Im = S ср ? Um (1 cos q ) (37)

В спектре полученной периодической последовательности содержится множество составляющих расположенных на частотах кратных частоте входного сигнала. Амплитуда этих составляющих определяется выражением

Im k = a k (q ) ? Im (38)

где Im k — амплитуда k-ой составляющей спектра отклика;

a k (q) — коэффициент пропорциональности для k-ой составляющей спектра;

Im — амплитуда импульсов выходного тока.

Коэффициенты a k (q) зависят от угла отсечки и определяются по функциям Берга. Графики функций Берга для постоянной составляющей и трех первых гармоник представлены на рисунке 27.

Рисунок 27 - Графики функций Берга

Для определения коэффициентов необходимо определить значения a k для всех функций при требуемом угле отсечки q. Например, необходимо определить коэффициенты пропорциональности для q=80°. По графику a 0 определяем коэффициент пропорциональности для постоянной составляющей при значении q=80°. Он равен a 0 (80°)»0,28. Аналогично определяем значение коэффициентов a 1 (80°)»0,47 (по функции a 1), a 2 (80°)»0,24 (по функции a 2)? a 3 (80°)»0,05 (по функции a 3).

При умножении частоты необходимо получить колебание с требуемой частотой как можно большей амплитуды. Это возможно при максимальных значениях a k (q). В свою очередь максимум a k (q) наблюдается в точках максимума соответствующих функций Берга. Каждая функция имеет максимум при одном определенном угле отсечки. Угол отсечки, при котором наблюдается наибольшая амплитуда требуемой гармоники, называется оптимальным углом отсечки . Так оптимальным углом отсечки для второй гармоники является q=60°, а для третьей q=40°. Оптимальный угол отсечки задается напряжением смещения U 0 .

Данный метод позволяет получить колебания с кратностью 2 и 3. Это объясняется тем, что амплитуды гармонических составляющих, в спектре отклика, с большими номерами имеют слишком малую амплитуду. Задание требуемого оптимального угла отсечки для этих составляющих приведет к уменьшению амплитуды импульсов выходного тока и опять таки к получению колебаний с очень малой амплитудой.

Принципиальная схема умножителя частоты реализующего метод угла отсечки приведена на рисунке 28.

Рисунок 28 - Принципиальная электрическая схема умножителя частоты на транзисторе

В этом умножителе в качестве нелинейного элемента используется биполярный транзистор VT1, работающий в режиме отсечки коллекторного тока. На транзистор подается напряжение питания Ек и напряжение смещения U 0 . Входное напряжение поступает через колебательный контур L1 C1. Колебательный контур используется для получения большей стабильности частоты входного колебания, т. е. чтобы на вход транзистора поступало колебание содержащее только одну гармонику на требуемой частоте, и тем самым исключить искажение получаемого колебания. Транзистор трансформирует спектр колебания. Затем гармоника с требуемой частотой выделяется колебательным контуром L2 C2, используемым в качестве полосового фильтра.

Характеристикой умножителя частоты является коэффициент умножения, показывающий во сколько раз частота выходного колебания превышает частоту входного колебания

Ку= fвых/ fвх (39)

Как отмечалось выше коэффициент умножения данного умножителя не превышает 3. Для получения Ку>3 необходимо использовать многокаскадные схемы умножителя (последовательное включение нескольких умножителей). Например для получения Ку=6 необходимо последовательно включить два умножителя с Ку=2 и Ку=3.

Методы умножения частоты с помощью ППИ и радиоимпульса

Метод получения кратных частот с помощью ППИ основан на том, что в спектре периодической последовательности уже имеются гармонические составляющие на кратных частотах сигнала, т. е. кратных первой гармонике (рисунок 29). Поэтому из спектра необходимо только выделить гармонику с требуемой частотой. Для получения колебания с большей амплитудой, необходимо выделять гармонические составляющие первого лепестка спектра, причем амплитуда составляющих уменьшается меньше, если количество составляющих в лепестке больше. Таким образом, для умножения частоты используются периодические последовательности со скважностью более 14.

Данный метод позволяет увеличить частоту колебания в десятки раз.

Метод получения кратных частот с помощью радиоимпульса заключается в перемножении исходного колебания с другим высокочастотным гармоническим колебанием, т. е. осуществляется модуляция гармонической несущей импульсным колебанием. В этом случае спектр импульсного колебания переносится в область частот гармонического колебания, в результате чего формируется радиоимпульс. Затем из спектра полученного радиоимпульса выделяют гармонику с требуемой частотой. Данный метод позволяет получить колебание с частотой в сотни раз превышающее частоту исходного колебания.

Рисунок 29 - Умножение частоты с помощью ППИ: а) исходная ППИ c частотой fs и скважностью 17; б) спектр ППИ; в) полученное колебание с частотой 10fs

Loading...Loading...