Принципы фон Неймана построения электронно-вычислительной машины. Архитектура ЭВМ Джона фон Неймана

Архитектурой компьютера считается его представление на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного запоминающего устройства (ОЗУ, ОП), внешних ЗУ и периферийных устройств.

Компонентами архитектуры компьютера являются: вычислительные и логические возможности, аппаратные средства и программное обеспечение.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые типичные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать его описание на любом уровне детализации.

Архитектуру компьютера следует отличать от его структуры. Структура определяет конкретный набор устройств, блоков, узлов, входящих в состав компьютера, тогда как архитектура определяет правила взаимодействия составных частей компьютера.

Принципы (архитектура) фон Неймана . В основу построения большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.

1. Принцип программного управления . Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. Так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Структура отдельной команды имеет вид:

<код операции> <операнды>,

где <код операции> определяет, какая операция должна выполняться;

<операнды> - список (возможно, одноэлементный) тех констант, адресов или имен переменных, над которыми выполняется данная операция.

В зависимости от числа операндов различают одно-, двух- и трехадресные машинные команды. Каждая команда имеет определенный объем, измеряемый байтами.

2. Принцип условного перехода. Если после выполнения команды следует перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов (ветвления), которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп».



Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

3. Принцип однородности памяти . Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

4. Принцип размещения программы в памяти . Программа, требуемая для работы ЭВМ, предварительно размещается в памяти компьютера, а не вводится команда за командой.

5. Принцип адресности . Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

6. Принцип иерархии памяти . Память ЭВМ неоднородна. Для часто используемых данных выделяется память меньшего объема, но большего быстродействия; для редко используемых данных выделяется память большего объема, но меньшего быстродействия.

7. Принцип двоичной системы счисления . Для внутреннего представления данных и программ в памяти ЭВМ применяется двоичная система счисления, которую можно проще реализовать технически.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Существуют и другие классы компьютеров, принципиально отличающиеся от фон-неймановских. Здесь, например, может не выполняться принцип программного управления, т.е. они могут работать без счетчика (регистра адреса) команд, указывающего на выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя. Такие компьютеры называются не-фон-неймановскими.

Машина фон Неймана состояла из памяти, представлявшей собой набор регистров, АЛУ, устройства ввода-вывода и устройства управления (рис. 3.7).

Устройство ввода передавало команды и данные в АЛУ, откуда они записывались в память. Все команды , совокупность которых называется программой , записываются в память в соседние ячейки по возрастанию их адресов, а данные, которые требуют обработки, - в ячейки с произвольными адресами. Последняя команда программы - это обязательно команда остановки работы. Каждая команда содержит код операции, которую необходимо выполнить, и адреса ячеек, в которых находятся данные, обрабатываемые этой командой. Устройство управления содержит специальный регистр, который называется «Счетчик команд ». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы. После чего вычислительная машина переходит в режим автоматического выполнения программы.

Рис. 3.7. Машина фон Неймана

Устройство управления считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство - «Регистр команд ». Регистр команд хранит команду во время ее исполнения. Устройство управления расшифровывает тип операции команды, считывает из памяти данные, адреса которых указаны в команде, и приступает к ее выполнению. Для каждой команды устройство управления имеет свой алгоритм обработки, который заключается в выработке управляющих сигналов для всех остальных устройств машины. Этот алгоритм мог быть реализован на основе комбинационных логических схем или с помощью специальной внутренней памяти, куда эти алгоритмы были записаны в виде микрокоманд, объединенных в микропрограммы. Выполнение микропрограммы происходит по тому же принципу, что и программы в основной памяти, т.е. по принципу фон Неймана. Каждая микрокоманда содержит набор управляющих сигналов для устройств машины. Отметим, что устройства управления выполнением команд процессоров в современных компьютерных системах также строятся по принципу комбинационных схем или микропрограммных автоматов, в соответствии с чем делятся на RISC и CISC процессоры, о которых будет рассказано ниже.

Микропрограмма выполнения любой команды обязательно содержит сигналы, изменяющие содержимого счетчика команд на единицу. Таким образом, после завершения выполнения очередной команды, счетчик команд указывал на следующую ячейку памяти, в которой находилась следующая команда программы. Устройство управления читает команду, адрес которой находится в счетчике команд, помещает ее в регистр команд и т.д. Этот процесс продолжается до тех пор, пока очередная исполняемая команда не оказывается командой останова исполнения программы. Интересно отметить, что и команды, и данные, находящиеся в памяти, представляют собой целочисленные двоичные наборы. Отличить команду от данных устройство управления не может, поэтому, если программист забыл закончить программу командой останова, устройство управления читает следующие ячейки памяти, в которых уже нет команд программы, и пытается интерпретировать их как команды.

Особым случаем можно считать команды безусловного или условного перехода, когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов. В этом случае команда перехода содержит адрес ячейки, куда требуется передать управление. Этот адрес записывается устройством управления непосредственно в счетчик команд и происходит переход на соответствующую команду программы.


Джон фон Нейман (1903 - 1957 гг.) - венгеро-американский математик еврейского происхождения, сделавший важный вклад в квантовую физику, квантовую логику, функциональный анализ, теорию множеств, информатику, экономику и другие отрасли науки.


Архитектура ЭВМ – это внутренняя структура в машине, ее логическая организация, определяющая процесс обработки и методы кодирования данных, состав, назначение, принципы взаимодействия технических средств и программного обеспечения.


Процессор

В 1945 году Джон фон Нейман создает архитектуру ЭВМ.

Машина фон Неймана состоит из запоминающего устройства (памяти) - ЗУ, арифметико-логического устройства - АЛУ, устройства управления – УУ, а также устройств ввода и вывода.

Устройство ввода

Устройство вывода



В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

Герман Голдстайн

Артур Беркс

Джон фон Нейман



В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления.

Преимущество перед десятичной системой счисления заключается в том, что устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.


Системы счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная


Работа ЭВМ контролируется программой, состоящей из набора команд. Команды выполняются последовательно друг за другом. Созданием машины с хранимой в памяти программой было положено начало тому, что мы сегодня называем программированием.


При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.


В любой момент можно обратиться к любой ячейке памяти по ее адресу. Этот принцип открыл возможность использовать переменные в программировании.


Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода.


Достижения Джона фон Неймана.

Джон фон Нейман был удостоен высших академических почестей. Он был избран членом Академии точных наук (Лима, Перу), Американской академии искусств и наук, Американского философского общества, Ломбардского института наук и литературы, Нидерландской королевской академии наук и искусств, Национальной академии США, почетным доктором многих университетов США и других стран.



Наименование параметра Значение
Тема статьи: Принципы Фон Неймана
Рубрика (тематическая категория) Компьютеры

Определœение и принципы организации информационных процессов ЭВМ

Научно-технический прогресс привел к созданию разнообразных вычислительных средств: электронно–вычислительных машин (ЭВМ), вычислительных систем (ВС) и вычислительных сетей (ВСТ).

Οʜᴎ различаются структурной организацией и функциональными возможностями. Дать определœение ЭВМ представляется сложным, т.к. слово “электронные” подразумевает электронные лампы в качестве элементной базы, а современные ЭВМ правильней называть “микроэлектронными”. Слово “вычислительные” подразумевает, что устройство, предназначенное для проведения вычислений, однако анализ программ показывает, что современные ЭВМ на чисто вычислительную работу (сложение, вычитание, умножение) тратят не более 10-15 % времени. Основное время затрачивается на выполнение операций пересылки данных, сравнения, ввода-вывода и т.д. То же самое относится к англоязычному термину “computer”, ᴛ.ᴇ. вычислитель. К понятию ЭВМ можно подходить с нескольких точек зрения. Целœесообразно описать минимальный набор устройств, которые входят в состав любой ЭВМ и тем самым определить состав минимальной ЭВМ, а также сформулировать принципы работы отдельных блоков ЭВМ и принципы организации ЭВМ, как системы, состоящей из взаимосвязанных функциональных блоков.

Принципы Фон Неймана

Большинство современных ЭВМ стоятся на базе принципов, сформулированных американским ученым, одним из “отцов” кибернетики – Джоном Фон Нейманом. Впервые эти принципы были опубликованы Фон Нейманом в 1945 году в статье по его машинœе ENIAC (Electronic Numerical Integrator and Calculator). Она работал с десятиразрядными числами со скоростью 300 операций в секунду, состояла из 18 тысяч электронных ламп, потребляла мощность 180 кВт и занимала площадь 167 м 2 . Эта ЭВМ была одной из первых машин с хранимой в памяти программой, а не читаемой с перфокарты или другого подобного устройства.

Принципы Фон Неймана сводятся к следующему:

1) основными блоками фон-неймановской машины являются блок управления, арифметико-логическое устройство (АЛУ), память и устройства ввода-вывода

2) информация кодируется в двоичной форме и разделяется на единицы, называемые словами.

3) алгоритм представлен в форме последовательно управляющих слов, которые определяют смысл операций; эти управляющие слова называются командами; совокупность команд, представляющих алгоритм, называются программой

4) программа и данные хранятся в одной и той же памяти; разнотипные слова различаются по способу использования, но не по способу кодирования

5) устройство управления и АЛУ обычно объединяют в один блок, называемый центральным процессором; они определяют действия, подлежащие выполнению путем считывания команд из оперативной памяти; обработка информации, предписанная алгоритмом, сводится к последовательному выполнению команд в порядке, одно-определœенном программой

Архитектура ЭВМ - ϶ᴛᴏ абстрактное определœение машины в терминах базовых функциональных модулей, языков, структур данных. Архитектура не определяет особенности реализации аппаратной части ЭВМ, времени выполнения команд, степени параллелизма, ширины шин и других аналогичных характеристик. Архитектура отображает аспекты структуры ЭВМ, которые являются видимыми для пользователя: систему команд, режимы адресации, форматы данных, набор программно-доступных регистров (совокупность триггеров для временного хранения и преобразования информации). Одним словом, термин “архитектура” используется для описания возможностей , предоставленных ЭВМ.

Конфигурация ЭВМ - ϶ᴛᴏ компоновка вычислительного устройства с четким определœением характера, количества взаимосвязей и базовых характеристик его функциональных элементов.

Организация ЭВМ определяет, как реализованы возможности ЭВМ.

Принципы Фон Неймана - понятие и виды. Классификация и особенности категории "Принципы Фон Неймана" 2017, 2018.

  • - Принципы фон Неймана, положенные в основу работы компьютера

    Классификация ЭВМ Электронная вычислительная машина (ЭВМ) – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач. ЭВМ различают, например: - по этапам создания и... .


  • - Принципы фон Неймана

    Принцип однородности памяти Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования. Это позволяет производить над командами те же операции, что и над числами, и, соответственно, открывает ряд... .


  • - Программный принцип работы компьютера. Классическая архитектура ЭВМ принципы Фон Неймана.

    В основе организации вычислительного процесса на ЭВМ лежит принцип программного управления. Программа – это указание на последовательность действий (команд), которую должен выполнить компьютер, чтобы решить поставленную задачу обработки информации. Программный... .


  • - Классическая архитектура ЭВМ и принципы фон Неймана

    Основы учения об архитектуре вычислительных машин заложил великий американский ученый Джон фон Нейман. Он подключился к созданию первой ламповой ЭВМ ENIAC, когда ее конструкция была уже выбрана. Фон Нейман высказал идею принципиально новой ЭВМ. Вместе со своими коллегами Г.... [читать подробнее] .


  • - Принципы фон Неймана

    Расчет информационной емкости для технических систем При определении количества информации обычно руководствуются следующим определением информации: «информация» - это отражение предметного мира, воспринимаемого человеком с помощью его собственных органов... .



  • Такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти.

    Энциклопедичный YouTube

    • 1 / 5

      Основы учения об архитектуре вычислительных машин заложил фон Нейман в 1944 году, когда подключился к созданию первого в мире лампового компьютера ЭНИАК . В процессе работы над ЭНИАКом в в Пенсильванском Университете во время многочисленных дискуссий со своими коллегами Джоном Уильямом Мокли , Джоном Экертом , Германом Голдстайном и Артуром Бёрксом, возникла идея более совершенной машины под названием EDVAC . Исследовательская работа над EDVAC продолжалась параллельно с конструированием ЭНИАКа.

      В марте 1945 года принципы логической архитектуры были оформлены в документе, который назывался «Первый проект отчёта о EDVAC » - отчет для Баллистической Лаборатории Армии США, на чьи деньги осуществлялась постройка ЭНИАКа и разработка EDVACа . Отчет, поскольку он являлся всего лишь наброском, не предназначался для публикации, а только для распространения внутри группы, однако Герман Голдстайн - куратор проекта со стороны Армии США - размножил эту научную работу и разослал её широкому кругу ученых для ознакомления. Так как на первой странице документа стояло только имя фон Неймана , у читавших документ сложилось ложное впечатление, что автором всех идей, изложенных в работе, является именно он. Документ давал достаточно информации для того, чтобы читавшие его могли построить свои компьютеры, подобные EDVACу на тех же принципах и с той же архитектурой, которая в результате стала называться «архитектурой фон Неймана».

      После завершения Второй Мировой войны и окончания работ над ЭНИАКом в феврале 1946 года команда инженеров и ученых распалась, Джон Мокли , Джон Экерт решили обратиться в бизнес и создавать компьютеры на коммерческой основе. Фон Нейман, Голдстайн и Бёркс перешли в , где решили создать свой компьютер «IAS-машина », подобный EDVACу , и использовать его для научно-исследовательской работы. В июне 1946 года они изложили свои принципы построения вычислительных машин в ставшей классической статье «Предварительное рассмотрение логической конструкции электронно-вычислительного устройства» . С тех пор прошло более полувека, но выдвинутые в ней положения сохраняют свою актуальность и сегодня. В статье убедительно обосновывается использование двоичной системы для представления чисел, а ведь ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде. Авторы продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

      Помимо машин, работавших с двоичным кодом, существовали и существуют троичные машины . Троичные компьютеры имеют ряд преимуществ и недостатков перед двоичными. Среди преимуществ можно выделить быстродействие (операции сложения выполняются примерно в полтора раза быстрее), наличие двоичной и троичной логики, симметричное представление целых чисел со знаком (в двоичной логике либо будут иметь место два нуля (положительный и отрицательный), либо будет иметь место число, которому нет пары с противоположным знаком). К недостаткам - более сложная реализация по сравнению с двоичными машинами.

      Ещё одной революционной идеей, значение которой трудно переоценить, является принцип «хранимой программы». Первоначально программа задавалась путём установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ЭНИАК требовалось несколько дней, в то время как собственно расчет не мог продолжаться более нескольких минут - выходили из строя лампы, которых было огромное количество. Однако программа может также храниться в виде набора нулей и единиц, причём в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

      Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы , в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но почти невозможно применить для обработки текста и компьютерных игр , для просмотра графических изображений или видео . Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации , перекоммутации и перестройки блоков и устройств и т. п.

      Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций , и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

      Принципы фон Неймана

      Принцип однородности памяти Принципиальное отличие архитектуры "фон Неймана" (принстонской) от "Гарвардской ". Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования; то есть одно и то же значение в ячейке памяти может использоваться и как данные, и как команда, и как адрес в зависимости лишь от способа обращения к нему. Это позволяет производить над командами те же операции, что и над числами, и, соответственно, открывает ряд возможностей. Так, циклически изменяя адресную часть команды, можно обеспечить обращение к последовательным элементам массива данных. Такой прием носит название модификации команд и с позиций современного программирования не приветствуется. Более полезным является другое следствие принципа однородности, когда команды одной программы могут быть получены как результат исполнения другой программы. Эта возможность лежит в основе трансляции - перевода текста программы с языка высокого уровня на язык конкретной вычислительной машины. Принцип адресности Структурно основная память состоит из пронумерованных ячеек, причём процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек - адреса. Принцип программного управления Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов - команд. Каждая команда предписывает некоторую операцию из набора операций, реализуемых вычислительной машиной. Команды программы хранятся в последовательных ячейках памяти вычислительной машины и выполняются в естественной последовательности, то есть в порядке их положения в программе. При необходимости, с помощью специальных команд, эта последовательность может быть изменена. Решение об изменении порядка выполнения команд программы принимается либо на основании анализа результатов предшествующих вычислений, либо безусловно. Принцип двоичного кодирования Согласно этому принципу, вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. Каждый тип информации представляется двоичной последовательностью и имеет свой формат. Последовательность битов в формате, имеющая определенный смысл, называется полем. В числовой информации обычно выделяют поле знака и поле значащих разрядов. В формате команды в простейшем случае можно выделить два поля: поле кода операции и поле адресов.

      Компьютеры, построенные на принципах фон Неймана

      По плану, первым компьютером, построенным по архитектуре фон Неймана, должен был стать EDVAC (Electronic Discrete Variable Automatic Computer) - одна из первых электронных вычислительных машин. В отличие от своего предшественника ЭНИАКа, это был компьютер на двоичной, а не десятичной основе. Как и ЭНИАК, EDVAC был разработан в Институте Мура Пенсильванского Университета для Лаборатории баллистических исследований (англ.) Армии США командой инженеров и учёных во главе с Джоном Преспером Экертом (англ.) и Джоном Уильямом Мокли при активной помощи математика], однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, ознакомившись с ЭНИАКом и проектом EDVAC, сумели решить эти проблемы гораздо раньше. Первыми компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

      1. прототип - Манчестерская малая экспериментальная машина - Манчестерский университет , Великобритания, 21 июня 1948 года;
      2. EDSAC - Кембриджский университет , Великобритания, 6 мая 1949 года;
      3. Манчестерский Марк I - Манчестерский университет , Великобритания, 1949 год;
      4. BINAC - США, апрель или август 1949 года;
      5. CSIR Mk 1
      6. EDVAC - США, август 1949 года - фактически запущен в 1952 году;
      7. CSIRAC - Австралия, ноябрь 1949 года;
      8. SEAC - США, 9 мая 1950 года;
      9. ORDVAC - США, ноябрь 1951 года;
      10. IAS-машина - США, 10 июня 1952 года;
      11. MANIAC I - США, март 1952 года;
      12. AVIDAC - США, 28 января 1953 года;
      13. ORACLE - США, конец 1953 года;
      14. WEIZAC - Израиль, 1955 год;
      15. SILLIAC - Австралия, 4 июля 1956 года.

      В СССР первой полностью электронной вычислительной машиной, близкой к принципам фон Неймана, стала МЭСМ , построенная Лебедевым (на базе киевского Института электротехники АН УССР), прошедшая государственные приемочные испытания в декабре 1951 года.

      Узкое место архитектуры фон Неймана

      Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти. Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность канала "процессор-память" и скорость работы памяти существенно ограничивают скорость работы процессора - гораздо сильнее, чем если бы программы и данные хранились в разных местах. Так как скорость процессора и объём памяти увеличивались гораздо быстрее, чем пропускная способность между ними, узкое место стало большой проблемой, серьёзность которой возрастает с каждым новым поколением процессоров [ ] ; данная проблема решается совершенствованием систем кэширования, а это порождает множество новых проблем [каких? ] .

      Термин «узкое место архитектуры фон Неймана» ввел Джон Бэкус в 1977 в своей лекции «Можно ли освободить программирование от стиля фон Неймана?», которую он прочитал при вручении ему Премии Тьюринга

      Ученые из США и Италии в 2015 заявили о создании прототипа мем-процессора (английское memprocessor) с отличной от фон-неймановской архитектурой и возможности его использования для решения -полных задач .

      См. также

      Литература

      • Herman H. Goldstine. The Computer from Pascal to von Neumann . - Princeton University Press, 1980. - 365 p. - ISBN 9780691023670 . (англ.)
      • William Aspray. John von Neumann and the Origins of Modern Computing . - MIT Press, 1990. - 394 p. - ISBN 0262011212 . (англ.)
      • Scott McCartney. ENIAC: The Triumphs and Tragedies of the World"s First Computer . - Berkley Books, 2001. - 262 p. -

      Государственное образовательное учреждение

      высшего профессионального образования Тюменской области

      ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

      МИРОВОЙ ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА

      Кафедра математики и информатики

      по дисциплине

      «ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ, СЕТИ И ТЕЛЕКОМУНИКАЦИИ»

      «ПРИНЦИПЫ ФОН НЕЙМАНА»

        Введение………………………………………………………………....2

        Основные принципы архитектуры Джона фон Неймана…………….3

        Структура ЭВМ…………………………………………………………3

        Как работает машина Джона фон Неймана…………………………...4

        Заключение……………………………………………………………...6

      Список литературы………………………………………………………...8

      Введение

      С середины 60-х годов очень сильно изменился подход к созданию вычислительных машин. Вместо разработки аппаратуры и средств математического обеспечения стала проектироваться система, состоящая из синтеза аппаратных (hardware) и программных (software) средств. При этом на главный план выдвинулась концепция взаимодействия. Так возникло новое понятие - архитектура ЭВМ.

      Под архитектурой ЭВМ принято понимать совокупность общих принципов организации аппаратно-программных средств и их основных характеристик, определяющая функциональные возможности вычислительной машины при решении соответствующих типов задач.

      Архитектура ЭВМ охватывает значительный круг проблем, связанных с созданием комплекса аппаратных и программных средств и учитывающих большое количество определяющих факторов. Среди этих факторов основными являются: стоимость, сфера применения, функциональные возможности, удобство в эксплуатации, а одним из основных компонентов архитектуры считаются аппаратные средства.

      Архитектуру вычислительного средства необходимо отличать от структуры, так как структура вычислительного средства определяет его текущий состав на определенном уровне детализации и описывает связи внутри средства. Архитектура же определяет основные правила взаимодействия составных элементов вычислительного средства, описание которых выполняется в той мере, в какой необходимо для формирования правил взаимодействия. Она устанавливает не все связи, а только наиболее необходимые, которые должны быть известны для более грамотного использования применяемого средства.

      Так, пользователю ЭВМ не важно, на каких элементах выполнены электронные схемы, схемно или программно исполняются команды и тому подобное. Архитектура ЭВМ действительно отражает круг проблем, которые относятся к общему проектированию и построению вычислительных машин и их программного обеспечения.

      Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно – математическое обеспечение. Структура ЭВМ - совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление.

      Основы учения об архитектуре вычислительных машин были заложены Джон фон Нейманом. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ.

      Основные принципы архитектуры Джона фон Неймана

      Джон фон Нейман (1903 – 1957) – американский математик, внесший большой вклад в создание первых ЭВМ и разработку методов их применения. Именно он заложил основы учения об архитектуре вычислительных машин, подключившись к созданию первой в мире ламповой ЭВМ ENIAC в 1944 году, когда ее конструкция была уже выбрана. В процессе работы, во время многочисленных дискуссий со своими коллегами Г.Голдстайном и А.Берксом, Джон фон Нейман высказал идею принципиально новой ЭВМ. В 1946 году ученые изложили свои принципы построения вычислительных машин в ставшей классической статье «Предварительное рассмотрение логической конструкции электронно-вычислительного устройства». С тех пор прошло более полувека, но выдвинутые в ней положения сохраняют свою актуальность и сегодня.

      В статье убедительно обосновывается использование двоичной системы для представления чисел, в ведь ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде. Авторы продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации – текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

      Еще одной революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип «хранимой программы». Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней, в то время как собственно расчет не мог продолжаться более нескольких минут – выходили из строя лампы, которых было огромное количество. Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

      Структура ЭВМ

      Джон фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ), обычно объединяемые в центральный процессор, в который также входит набор регистров общего назначения (РОН) – для промежуточного хранения информации в процессе ее обработки; память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком.

      Архитектура ЭВМ, построенная на принципах Джон фон Неймана.

      Сплошные линии со стрелками указывают направление потоков информации, пунктирные – управляющих сигналов.

      Как работает машина Джона фон Неймана

      Теперь более подробно поговорим о том, как же работает машина построенная на данной архитектуре. Машина фон Неймана состоит из запоминающего устройства (памяти) – ЗУ, арифметико-логического устройства – АЛУ, устройства управления – УУ, а также устройств ввода и вывода, что видно их схемы и о чем говорилось ранее.

      Программы и данные вводятся в память из устройства ввода через арифметико-логическое устройство. Все команды программы записываются в соседние ячейки памяти, а данные для обработки могут содержаться в произвольных ячейках. У любой программы последняя команда должна быть командой завершения работы.

      Команда состоит из указания, какую операцию следует выполнить и адресов ячеек памяти, где хранятся данные, над которыми следует выполнить указанную операцию, а также адреса ячейки, куда следует записать результат, если его требуется сохранить в ЗУ.

      Арифметико-логическое устройство выполняет указанные командами операции над указанными данными. Из него результаты выводятся в память или устройство вывода.

      Управляющее устройство (УУ) управляет всеми частями компьютера. От него на другие устройства поступают сигналы «что делать», а от других устройств УУ получает информацию об их состоянии. Оно содержит специальный регистр (ячейку), который называется «счетчик команд». После загрузки программы и данных в память в счетчик команд записывается адрес первой команды программы, а УУ считывает из памяти содержимое ячейки памяти, адрес которой находится в счетчике команд, и помещает его в специальное устройство - «Регистр команд». УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды.

      АЛУ – обеспечивает арифметическую и логическую обработку двух переменных, в результате которых формируется выходная переменная. Функции АЛУ обычно сводятся к простым арифметическим и логическим операциям и операциям сдвига. Также формирует ряд признаков результата (флагов), характеризующих полученный результат и события, произошедшие в результате его получения (равенство нулю, знак, четность, переполнение). Флаги могут анализироваться УУ с целью принятия решения о дальнейшей последовательности выполнения команд.

      В результате выполнения любой команды счетчик команд изменяется на единицу и, следовательно, указывает на следующую команду программы. Когда требуется выполнить команду, не следующую по порядку за текущей, а отстоящую от данной на какое-то количество адресов, то специальная команда перехода содержит адрес ячейки, куда требуется передать управление.

      Заключение

      Итак, выделим ещё раз основные принципы, предложенные фон Нейманом:

        Принцип двоичного кодирования. Для представления данных и команд используется двоичная система счисления.

        Принцип однородности памяти. Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления - чаще всего двоичной). Над командами можно выполнять такие же действия, как и над данными.

        Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

        Принцип последовательного программного управления. Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой.

        Принцип условного перехода. Команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые изменяют последовательность выполнения команд в зависимости от значений данных. (Сам принцип был сформулирован задолго до Джона фон Неймана Адой Лавлейс и Чарльзом Бэббиджем, однако он логически включен в фон-неймановский набор как дополняющий предыдущий принцип.)

      Джон фон Нейман внес огромный вклад в развитие первых ЭВМ и разработку методов их применения. Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название «фон-неймановской архитектуры». Принципы этой архитектуры широко используются и сегодня. Подавляющее большинство вычислительных машин на сегодняшний день – фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

      Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок – процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера).

      У современных компьютеров запоминающее устройство, хранящее информацию и программы, «многоярусно». Оно включает в себя оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ, но с существенно более медленным доступом. На ОЗУ и ВЗУ классификация устройств памяти не заканчивается – определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

      По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет только в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

      Список литературы

        Х.Крейгон. Архитектура компьютера и её реализация. Учебное пособие. – С-Пб., Мир, 2004.

        Э.Таненбауэм. Архитектура компьютера. Научная литература. – С-Пб., Питер, 2003.

        История компьютера. [Электронный ресурс]. – Режим доступа: http://www.chernykh.net/. Дата обращения: 10.11.2010.

        Планета информатики. [Электронный ресурс]. – Режим доступа: http://www. inf1.info/. Дата обращения: 12.11.2010.

      1. Архитектура фон Неймана

        Реферат >> Строительство

        Соавторов, и данные идеи получили название «принципы фон Неймана» . Принцип двоичного кодирования. Для представления данных... к типу фоннеймановских. Компьютеры, построенные на принципах фон Неймана В середине 1940-х проект компьютера, хранящего...

      2. Принципы организации и работы ПК

        Курсовая работа >> Информатика

        Устройство центрального процессора. 1. ПРИНЦИПЫ ОРГАНИЗАЦИИ И РАБОТЫ ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА... Фон Нейман не только выдвинул основополагающие принципы логического... ЭВМ, построенной на принципах фон Неймана . Разработанные фон Нейманом основы архитектуры...

      3. Принцип неопределенности гейзенберга

        Биография >> Биология

        Кинематических и механических соотношений", посвященной принципу неопределенности. Согласно принципу неопределенности, одновременное измерение двух... идеальных измерений, иногда называемых измерениями фон

    Loading...Loading...