Системы счисления вся теория. Арифметические операции в различных

Системы счисления.

Системой счисления называют совокупность символов (цифр) и правил их использования для представления чисел.

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 10 2 + 5 10 1 + 7 10 0 + 7 10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе.

Возможно бесчисленное множество позиционных систем : двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a - m q - m , где a i – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

Например:

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2 , а именно :

    двоичная (используются цифры 0, 1);

    восьмеричная (используются цифры 0, 1, ..., 7);

    шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления .

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Например:


Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную , его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Например,

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1 . Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

примеры:

Сложение и вычитание

В системе с основанием для обозначения нуля и первых с-1 натуральных чисел служат цифры 0, 1, 2, ..., с - 1. Для выполнения операции сложения и вычитания составляется таблица сложения однозначных чисел.

Таблица 1 - Сложение в двоичной системе

Например, таблица сложения в шестеричной системе счисления:

Таблица 2 - Сложение в шестеричной системе

Сложение любых двух чисел, записанных в системе счисления с основанием с, производится так же, как в десятичной системе, по разрядам, начиная с первого разряда, с использованием таблицы сложения данной системы. Складываемые числа подписываются одно за другим так, чтобы цифры одинаковых разрядов стояли по вертикали. Результат сложения пишется под горизонтальной чертой, проведенной ниже слагаемых чисел. Так же как при сложении чисел в десятичной системе, в случае, когда сложение цифр в каком-либо разряде дает число двузначное, в результат пишется последняя цифра этого числа, а первая цифра прибавляется к результату сложения следующего разряда.

Например,

Можно обосновать указанное правило сложения чисел, используя представление чисел в виде:

Разберем один из примеров:

3547=3*72+5*71+4*70

2637=2*72+6*71+3*70

(3*72+5*71+4*70) + (2*72+6*71+3*70) =(3+2)*72+(5+6)*7+(3+4)=

5*72+1*72+4*7+7=6*72+4*7+7=6*72+5*7+0=6507

Последовательно выделяем слагаемые по степени основания 7, начиная с низшей, нулевой, степени.

Вычитание производится также по разрядам, начиная с низшего, причем если цифра уменьшаемого меньше цифры вычитаемого, то из следующего разряда уменьшаемого "занимается" единица и из полученного двузначного числа вычитается соответствующая цифра вычитаемого; при вычитании цифр следующего разряда в этом случае нужно мысленно уменьшить цифру уменьшаемого на единицу, если же эта цифра оказалась нулем (и тогда уменьшение ее невозможно), то следует "занять" единицу из следующего разряда и затем произвести уменьшение на единицу. Специальной таблицы для вычитания составлять не нужно, так как таблица сложения дает результаты вычитания.

Например,

Умножение и деление

Для выполнения действий умножения и деления в системе с основанием с составляется таблица умножения однозначных чисел.

Таблица 3 - Умножение однозначных чисел

Таблица 4 - Умножение в шестеричной системе счисления

Умножение двух произвольных чисел в системе с основанием с производится так же, как в десятичной системе - "столбиком", то есть множимое умножается на цифру каждого разряда множителя (последовательно) с последующим сложением этих промежуточных результатов.

Например,

При умножении многозначных чисел в промежуточных результатах индекс основания не ставится:

Деление в системах с основанием с производится углом, так же, как в десятичной системе счисления. При этом используется таблица умножения и таблица сложения соответствующей системы. Сложнее дело обстоит, если результат деления не является конечной с-ичной дробью (или целым числом). Тогда при осуществлении операции деления обычно требуется выделить непериодическую часть дроби и ее период. Умение выполнять операцию деления в с-ичной системе счисления полезно при переводе дробных чисел из одной системы счисления в другую.

Например:


Перевод чисел из одной системы счисления в другую

Существует много различных способов перевода чисел из одной системы счисления в другую.

Способ деления

Пусть дано число N=an an-1. . . a1 а0 р.

Для получения записи числа N в системе с основанием h следует представить его в виде:

N=bmhm+bm-1hm-1+... +b1h+b0 (1)

где 1

N=bmbm-1... b1boh (2)

Из (1) получаем:

N= (bmhm-1+...+b)*h +b0 = N1h+b0, где 0? b0 ?h (3)

To есть, цифра b0 является остатком от деления числа N на число h. Неполное частное Nl = bmhm-1+ . . . +b1 представим в виде:

Nl = (bmhm-2 + ... + b2)h + b1 = N2h+b1, где 0? b2 ?h (4)

Таким образом, цифра bi в записи (2) числа N является остатком от деления первого неполного частного N1 на основание h новой системы счисления. Второе неполное частное N2 представим в виде:

N2 = (bmhm-3+ ... +b3)h+b2, где 0? b2 ?h (5)

то есть цифра b2 является остатком от деления второго неполного частного N2 на основание h новой системы. Так как не полные частные убывают, то этот процесс конечен. И тогда мы получаем Nm = bm, где bm

Nm-1 = bmh+bm.1 = Nmh+bm.1

Таким образом, последовательность цифр bm, bm-1 . . ,b1,b0 в записи числа N в системе счисления с основанием h есть последовательность остатков последовательного деления числа N на основание h, взятая в обратной последовательности.

Рассмотрим пример: Выполнить перевод числа 123 в шестнадцатеричную систему счисления:

Таким образом, число 12310=7(11)16 либо можно записать как 7B16

Запишем число 340227 в пятеричной системе счисления:

Таким образом, получаем, что 340227=2333315

1.5 Арифметические операции в различных системах счисления

1.5.1 Сложение и вычитание

В системе с основанием я для обозначения нуля и первых с-1 натуральных чисел служат цифры 0, 1, 2, ..., с - 1. Для выполнения операции сложения и вычитания составляется таблица сложения однозначных чисел.

Например, таблица сложения в шестеричной системе счисления:

Сложение любых двух чисел, записанных в системе счисления с основанием с, производится так же, как в десятичной системе, по разрядам, начиная с первого разряда, с использованием таблицы сложения данной системы. Складываемые числа подписываются одно за другим так, чтобы цифры одинаковых разрядов стояли по вертикали. Результат сложения пишется под горизонтальной чертой, проведенной ниже слагаемых чисел. Так же как при сложении чисел в десятичной системе, в случае, когда сложение цифр в каком-либо разряде дает число двузначное, в результат пишется
последняя цифра этого числа, а первая цифра прибавляется к результату сложения следующего разряда.

Например,

Можно обосновать указанное правило сложения чисел, используя представление чисел в виде

Разберем один из примеров:

354 7 =3*7 2 +5*7 1 +4*7 0

263 7 =2*7 2 +6*7 1 +3*7 0

(3*7 2 +5*7 1 +4*7 0) + (2*7 2 +6*7 1 +3*7 0) =

=(3+2)*7 2 +(5+6)*7+(3+4)

5*7 2 +1*7 2 +4*7+7

Последовательно выделяем слагаемые по степени основания 7, начиная с низшей, нулевой, степени.

Вычитание производится также по разрядам, начиная с низшего, причем если цифра уменьшаемого меньше цифры вычитаемого, то из следующего разряда уменьшаемого "занимается" единица и из полученного двузначного числа вычитается соответствующая цифра вычитаемого; при вычитании цифр следующего разряда в этом случае нужно мысленно уменьшить цифру уменьшаемого на единицу, если же эта цифра оказалась нулем (и тогда уменьшение ее невозможно), то следует "занять" единицу из следующего разряда и затем произвести уменьшение на единицу. Специальной таблицы для вычитания составлять не нужно, так как таблица сложения дает результаты вычитания.

Например,

1.5.2 Умножение и деление

Для выполнения действий умножения и деления в системе с основанием с составляется таблица умножения однозначных чисел.

Например, таблица умножения в шестеричной системе счисления:

Умножение двух произвольных чисел в системе с основанием с производится так же, как в десятичной системе - "столбиком", то есть множимое умножается на цифру каждого разряда множителя (последовательно) с последующим сложением этих промежуточных результатов.

Например,

При умножении многозначных чисел в промежуточных результатах индекс основания не ставится:

Деление в системах с основанием с производится углом, так же, как в десятичной системе счисления. При этом используется таблица умножения и таблица сложения соответствующей системы. Сложнее дело обстоит, если результат деления не является конечной с-ичной дробью (или целым числом). Тогда при осуществлении операции деления обычно требуется выделить непериодическую часть дроби и ее период. Умение выполнять операцию деления в с-ичной системе счисления полезно при переводе дробных чисел из одной системы счисления в другую.

Например:

1.6 Перевод чисел из одной системы счисления в другую

Существует много различных способов перевода чисел из одной системы счисления в другую.

Способ деления.

Пусть дано число N=a n a n -1 . . . a 1 а 0 р.

Для получения записи числа N в системе с основанием h следует представить его в виде:

N=b m h m +b m -1 h m -1 +... +b 1 h+b 0 (1)

где 1

N=b m b m -1 ... b 1 b o h (2)

Из (1) получаем:

N= (b m h m -1 +...+b)*h +b 0 = N 1 h+b 0 , где 0? b 0 ?h (3)

To есть цифра b 0 является остатком от деления числа N на число h. Неполное частное N l = b m h m -1 + . . . +b 1 представим в виде:

N l = (b m h m -2 + ... + b 2)h + b 1 = N 2 h+b 1 , где 0? b 2 ?h (4)

Таким образом, цифра b i в записи (2) числа N является остатком от деления первого неполного частного N 1 на основание h новой системы счисления. Второе неполное частное N 2 представим в виде:

N 2 = (b m h m - 3 + ... +b 3)h+b 2 , где 0? b 2 ?h (5)

то есть цифра b 2 является остатком от деления второго неполного частного N 2 на основание h новой системы. Так как не полные частные убывают, то этот процесс конечен. И тогда мы получаем N m = b m , где b m

N m -1 = b m h+b m . 1 = N m h+b m . 1

Таким образом, последовательность цифр b m , b m -1 . . ,b 1 ,b 0 в записи числа N в системе счисления с основанием h есть последовательность остатков последовательного деления числа N на основание h, взятая в обратной последовательности.

Рассмотрим пример: Выполнить перевод числа 123 в шестнадцатеричную систему счисления:

Таким образом, число 123 10 =7(11) 16 либо можно записать как 7B 16

Запишем число 34022 7 в пятеричной системе счисления:

Таким образом, получаем, что 34022 7 =233331 5

Перевод с использованием десятичной системы счисления.

Любое число в любой системе счисления представимо в виде:

N = a n p n +...+a 1 p+a 0

Таким образом, имея запись числа в таком виде, мы легко можем перевести его в привычную нам десятичную систему счисления. Например

2209 5 =2*5 3 +2*5 2 +0*5 1 +9*5 0 =309 10

Так же, число, представленное в десятичной системе счисления, мы можем расписать по степеням любого другого основания:

220809 7 =2*7 5 +2*7 4 +0*7 3 +8*7 2 +0*7 1 +9*7 0 =38817 7

Таким способом можно перевести числа из одной системы в другую. Например: переведем число 625 7 в 3-ичную систему счисления.

625 7 =6 * 7 2 +2*7 1 +5*7 0 =6*49+2*7+5=31310

313 10 =1*3 5 +0*3 4 +2*3 3 +1*3 2 +2*3 1 +1*3 0 =1*243+2*27+1*9+2*3+1=102120 3

Ответ: 625т=102120 3

Систематические дроби. Перевод дробей в различные системы счисления.

Известно, что десятичная дробь отличается от целого числа только наличием запятой, отделяющей целую часть от дробной, и такое сходство не случайно.

Можно сказать, что запись дробного числа в виде десятичной дроби представляет собой перенесение общего принципа записи чисел в позиционной десятичной системе счисления на дробные числа.

В самом общем случае смешанное число, содержащее целую и дробную части, представляется в виде суммы степеней десятки и

Десятичные дроби являются частным случаем систематических дробей, которые можно строить аналогичным образом для любой позиционной системы счисления.

Например, дробь 5 -1 + 6 -2 + 3 -3 назвать восьмеричной и записать в виде: 0,563 8 .

Правила арифметических действий над с - ичными дробями (основание системы - q) такие же, как и над десятичными, но при действиях с однозначными числами нужно пользоваться таблицами сложения и умножения для данной системы.

Следует заметить, что не всякая простая дробь может быть записана в виде конечной десятичной дроби. Это явление наблюдается и в других позиционных системах счисления. При этом одно и то же число может в одной системе счисления записываться в виде конечной дроби, а в другой - в виде бесконечной.

Например:

При переводе дробей из одной позиционной системы счисления в другую необходимо иметь в виду возможность получения бесконечных дробей.

Общее правило перевода числа в систему счисления с основанием n:

Для перевода целого числа в систему счисления с основанием n его надо последовательно делить на n (отбрасывая остатки), при переводе дроби, меньшей единицы - последовательно умножить на n (отбрасывая целые). Цифрами числа в n - ичной системе счисления в первом случае будут остатки, записанные в обратном порядке, а во втором - целые части, записанные в порядке их получения. Целые и дробные части в смешанном числе переводятся отдельно.

Пример: 378,8359375 10 перевести в систему счисления с основанием q=8

Итак, 378,8359375 10 =572,654 8

Быстрый перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.

Перевод чисел между системами счисления, основания которых являются степенями числа 2, может производиться более простым алгоритмом.

Для записи двоичных чисел используют две цифры, то есть в каждом разряде числа возможны два варианта записи. Для записи восьмеричных чисел используется восемь цифр, то есть возможны восемь вариантов. А для записи шестнадцатеричных чисел используется 16 цифр, то есть 16 возможных вариантов.

Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в восьмеричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то нужно его дополнить нулями слева.

100 101 000 010 2

111 111 101 000 010 000 100 2

А для перевода целого двоичного числа в шестнадцатеричное, число разбивают на группы по 4 цифры и следуют тому же алгоритму, что и с

восьмеричной системой счисления.

Например:

1001 0000 1100 0111 0001 2

Например:

1111 1001 1101 000 2

Данное правило работает и наоборот, то есть любое целое число можно перевести из восьмеричной в двоичную и из шестнадцатеричной в двоичную.

Например:

Идентификация параметров осциллирующих процессов в живой природе, моделируемых дифференциальными уравнениями

Комплексные числа: их прошлое и настоящее

Логически строгую теорию комплексных чисел построил в XIX в (1835 г) ирландский математик Вильям Роумен Гамильтон. По Гамильтону комплексные числа - это упорядоченные пары z=(x,y) действительных чисел...

Линейные алгебры малых размерностей

Теорема. Следующие условия на алгебру Ли L над кольцом К эквивалентны (с - некоторое натуральное число): 1. Lс {0}, Lс+1={0}; 2. Zc-1(L) L, Zc(L)=L; 3. L обладает конечным центральным рядом длины с и не обладает таким рядом длины с -1; 4...

Математика в средние века

Пользование счетной доской избавляло от необходимости применения таблиц сложения. Поэтому в текстах зафиксированы лишь правила умножения и деления. Пример на умножение: =. Действия производятся, начиная со старших, а не с младших разрядов...

Проектирование уроков математики по теме "Нумерация" с использованием современных средств обучения

Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь...

Решение математических задач средствами Excel

Упражнение №21. Условие: Вычислить:. Решение: 1) В свободные ячейки вводим комплексные числа 2 + 4i,-3-2i,1-2i,-2+4i. 2) Выделим свободную ячейку и воспользуемся функцией "МНИМ.ПРОИЗВЕД". 3) Выделим свободную ячейку и воспользуемся функцией "МНИМ.РАЗН"...

Система счисления - это способ записи (изображения) чисел. Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы: · позиционные, · непозиционные...

Система счисления. Запись действий над числами

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами...

Система счисления. Запись действий над числами

Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII -- XIX вв.). Некоторые идеи, лежащие в основе двоичной системы, по существу были известны в Древнем Китае...

Система счисления. Запись действий над числами

Наиболее часто встречающиеся системы счисления - это двоичная, шестнадцатеричная и десятичная и восьмеричная...

1.1 История возникновения различных систем счисления Первобытному человеку считать почти не приходилось. "Один", "два" и "много" - вот все его числа. Но нам - современным людям - приходится иметь дело с числами буквально на каждом шагу...

Системы счисления и основы двоичных кодировок

Система счисления (Нумерация) - это способ представления числа символами некоторого алфавита, которые называются цифрами. Путем длительного развития человечество пришло к двум видам систем счисления: позиционной и не позиционной...

Системы счисления и основы двоичных кодировок

В самой древней нумерации употреблялся лишь знак "|" для единицы, и каждое натуральное число записывалось повторением символа единицы столько раз, сколько единиц содержится в этом числе...

Системы счисления и основы двоичных кодировок

Кроме десятичной системы счисления возможны позиционные системы счисления с любым другим натуральным основанием. В разные исторические периоды многие народы широко использовали различные системы счисления...

Урок зачет как одна из форм контроля учебных достижений семиклассников по алгебре

Существуют различные системы контроля: устный и письменный опрос, математический диктант, итоговые контрольные работы, тесты, зачеты, экзамены, повседневные наблюдения за учебной работой учащихся, проверка домашней работы...

| Информатика и информационно-коммуникационные технологии | Планирование уроков и материалы к урокам | 10 классы | Планирование уроков на учебный год (ФГОС) | Арифметические операции в позиционных системах счисления

Урок 15
§12. Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления с основанием q выполняются по правилам, аналогичным правилам, действующим в десятичной системе счисления.

В начальной школе для обучения детей счёту используют таблицы сложения и умножения. Подобные таблицы можно составить для любой позиционной системы счисления.

12.1. Сложение чисел в системе счисления с основанием q

Рассмотрите примеры таблиц сложения в троичной (табл. 3.2), восьмеричной (табл. 3.4) и шестнадцатеричной (табл. 3.3) системах счисления.

Таблица 3.2

Сложение в троичной системе счисления

Таблица 3.3

Сложение в шестнадцатеричной системе счисления

Таблица 3.4

Сложение в восьмеричной системе счисления

q получить сумму S двух чисел А и Б , надо просуммировать образующие их цифры по разрядам i справа налево:

Если a i + b i < q, то s i = a i + b i , старший (i + 1)-й разряд не изменяется;
если a i + b i ≥ q, то s i = а i + b i - q, старший (i + 1)-й разряд увеличивается на 1.

Примеры:

12.2. Вычитание чисел в системе счисления с основанием q

Чтобы в системе счисления с основанием q получить разность R двух чисел А и В , надо вычислить разности образующих их цифр по разрядам i справа налево:

Если a i ≥ b i , то r i = a i - b i , старший (i + 1)-й разряд не изменяется;
если a i < b i , то r i = a i - b i + g, старший (i + 1)-й разряд уменьшается на 1 (выполняется заём в старшем разряде).

Система счисления (СС)-это совокупность приёмов и правил записи чисел с помощью определенного набора символов.
Алфавит СС - набор символов(цифр), используемых для записи числа.
Основание СС (мощность алфавита СС) - количество символов(цифр) алфавита СС.
Все системы счисления делятся на позиционные и непозиционные . Непозиционная система счисления - это система, в которой количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа.
Итак, в непозиционных системах счисления позиция, которую цифра занимает в записи числа, роли не играет. Так, например, римская система счисления непозиционная. В числах XI и IX "вес” обоих цифр одинаков, несмотря на их месторасположение.

Позиционные системы счисления

Позиционная система счисления это система, в которой значение цифры зависит от ее места (позиции) в записи числа. Основание системы счисления количество знаков или символов, используемых для изображения числа в данной системе счисления
Основание системы счисления определяет её название: основание p - p-ая система счисления.
Например, система счисления в основном, применяемая в современной математике, является позиционной десятичной системой, её основание равно десяти. Для записи любых чисел в ней используется десять всем хорошо известных цифр (0,1,2,3,4,5,6,7,8,9).

Итак, мы сказали, что в позиционных системах счислениях имеет значение позиция, которую цифра занимает в записи числа. Так, запись 23 означает, что это число можно составить из 3 единиц и 2 десятков. Если мы поменяем позиции цифр, то получим совсем другое число – 32. Это число содержит 3 десятка и 2 единицы. «Вес» двойки уменьшился в десять раз, а «вес» тройки в десять раз возрос. Развернутая запись числа
Любое число N в позиционной системе счисления с основанием p может быть представлено в виде многочлена от p :
N=a k p k + a k-1 p k-1 +a k-2 p k-2 +...+a 1 p 1 +a 0 p 0 +a -1 p -1 +a -2 p -2 +...,
где N - число, p - основание системы счисления (p>1), a i - цифры числа (коэффициенты при степени p).
Числа в p-ой системе счисления записываются в виде последовательности цифр:
N=a k a k-1 a k-2 ...a 1 a 0 , a -1 a -2...
Запятая в последовательности отделяет целую часть числа от дробной.
3210 -1-2
N=4567,12 10 =4 *10 3 +5 *10 2 +6 *10 1 +7 *10 0 +1 *10 -1 +2 *10 -2

Двоичная система счисления

Для записи чисел используются только две цифры – 0 и 1. Выбор двоичной системы для использования в компьютере объясняется тем, что электронные элементы, из которых строятся ЭВМ, могут находиться только в двух хорошо различимых состояниях. По существу эти элементы представляют собой выключатели. Как известно выключатель либо включен, либо выключен. Третьего не дано. Одно из состояний обозначается цифрой 1, другое – 0. Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ.
В этой системе счисления любое число может быть представлено в виде:
N=a k 2 k + a k-1 2 k-1 +a k-2 2 k-2 +...+a 1 2 1 +a 0 2 0 +a -1 2 -1 +a -2 2 -2 +....
Например:11001,01 2 =1 *2 4 +1 *2 3 +0 *2 2 +0 *2 1 +1 *2 0 +0 *2 -1 +1 *2 -2 (развернутая запись числа в двоичной системе счисления)

Двоичная арифметика

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным правилам.

Сложение

Рассмотрим сложение чисел в двоичной системе счисления. В основе лежит таблица сложения одноразрядных двоичных чисел:

0+0=0
0+1=1
1+0=1
1+1=10
1+1+1=11

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или больше основания системы счисления. Для двоичной системы счисления эта величина равна двум.
Сложение многоразрядных двоичных чисел происходит в соответствие с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов с старшие.

Вычитание

Рассмотрим вычитание двоичных чисел. В основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначается 1 с чертой.

0-0=_0
0-1=11
1-0=1
1-1=0

Сложение и вычитание одноразрядных двоичных чисел
Сложение и вычитание многоразрядных двоичных чисел (примеры)

Умножение

В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

0*0=0
0*1=0
1*0=0
1*1=1

Умножение многоразрядных двоичных чисел происходит в соответствии с приведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

Деление

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.
Loading...Loading...